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Abstract. A model for the propagation of femtosecond laser pulses in transparent media and the formation
of light bullets is proposed. This model enable us to generalize Marburger’s formula for the position of
the nonlinear focus of the beam in the presence of delayed Kerr effect. It is shown that an instantaneous
higher-order saturation tuned to mimic the defocusing effect due to the plasma generated by multiphoton
ionization does not properly represent the dynamics of femtosecond filamentation as it violates causality
and artificially promotes long distance propagation in the form of periodic oscillations around a spatial
soliton. A causal description of multiphoton ionization leads to an extended moving focus model from which
the formation of a synchronized structure exhibiting several focusing-defocusing cycles before eventual
diffraction can be inferred.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics – 42.25.Bs Wave propagation, transmission and absorption –
42.65.Jx Beam trapping, self-focusing and defocusing; self-phase modulation – 52.38.Hb Self-focusing,
channeling, and filamentation in plasmas

1 Introduction

Femtosecond laser pulses have been observed to self-
channel in air over distances from several tenths to sev-
eral hundred of meters [1–7]. This spectacular propaga-
tion forming narrow light filaments proceeds from the
dynamical equilibrium between the conjugate effects of
self-focusing, diffraction and ionization, which provides an
efficient optical guiding mechanism for femtosecond pulses
in gases [8–15,17]. Despite extensive investigations of self-
focusing and self-trapping of intense laser beams for the
last three decades [18–20], the question whether a spatial
soliton supports the dynamics of the long range propaga-
tion of femtosecond laser pulses in the atmosphere is still
open. From lightning protection [21] to light detection and
ranging techniques [22–24], the applications of femtosec-
ond filamentation request the transport of high intensities
as light bullets [25–27] and therefore, this question is of
crucial importance for the control of the propagation dis-
tance and the generic properties of light filaments.

The aim of this paper is twofold: first, we develop a
nonlinear analysis leading to analytical self similar solu-
tions of light filaments. It is based on the classical model
equation governing the slowly varying envelope of the
electric field coupled with an evolution equation for the
density resulting from ionization [15,28,29]. Second, we
show that these self-similar solutions constitute either spa-
tial solitons or solutions oscillating globally around spa-
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tial solitons only when certain restrictive assumptions are
made. In femtosecond filamentation in air, the defocus-
ing effect of the plasma generated by multiphoton ioniza-
tion and the delayed Kerr effect due to stimulated molec-
ular Raman scattering induces a coupling between the
forward and the backward parts of the pulse which in-
fluences its nonlinear dynamics. We show that when these
effect are correctly taken into account, spatial solitons can-
not form. In this case, our self-similar solutions constitute
light bullets that closely follow the dynamics of the prop-
agation of femtosecond laser pulses in transparent media.
In particular, a short synchronized structure is formed
and exhibits several focusing-defocusing cycles before fi-
nal diffraction. This model constitutes an extended mov-
ing focus model [30] that we also compare with another
model from the literature called the spatial replenishment
model [9].

The outline of this paper is as follows. In Section 2, we
briefly recall the model equations for the propagation of
ultrashort laser pulses in air and we derive a partial dif-
ferential equation for the beam waist radius, which fully
describes the evolution of the filament in the form of a self-
similar solution of the propagation equation. In Section 3,
we generalize Marburger’s formula for the position of the
nonlinear focus of the beam in the presence of delayed
Kerr effect. In Section 4, we show that an oversimplifi-
cation of the model leads to a periodic pulse dynamics
oscillating around a spatial soliton, which does not de-
scribe correctly femtosecond filamentation in air. In Sec-
tion 5, we discuss multiphoton ionization and the delayed
Kerr effect and we show that when causality is correctly
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accounted for in these effects, the main properties of fem-
tosecond filamentation, including the formation of light
bullets, are retained in our model. We finally compare this
model to the moving focus [30] and the spatial replenish-
ment models [9].

2 Model of femtosecond filamentation

We start from an extended paraxial model which describes
the propagation along the z-axis of the linearly polarized
laser pulse. The pulse is decomposed into a slowly vary-
ing amplitude and a carrier wave with frequency ω0 and
wavenumber k ≡ n0ω0/c, where n0 denotes the linear in-
dex of the medium, as E = Re[E exp(ikz − iω0tlab)]ex.
The scalar envelope of the electric field E(x, y, z, t) evolves
according to the nonlinear envelope equation [28] ex-
pressed in the reference frame moving at the group ve-
locity vg ≡ ∂ω/∂k|ω0:
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where I ≡ |E(x, y, z, t)|2, ρ(x, y, z, t) denotes the electron
density of the plasma generated by ionization and t refers
to the retarded time variable tlab − z/vg. The first term
on the right hand side (rhs) of equation (1) accounts
for diffraction within the transverse plane. The second
term accounts for group velocity dispersion with coeffi-
cient k′′ = 0.2 fs2/cm at 800 nm. The third and fourth
terms on the rhs of equation (1) account for the Kerr effect
with an instantaneous component due to the electronic
response in the polarization and a delayed component, of
fraction f = 0.5, due to stimulated molecular Raman scat-
tering [31]. In air, at the laser wavelength λ0 = 800 nm, the
nonlinear index of refraction is n2 = 3.2 × 10−19 cm2/W
and the critical power for self-focusing expresses as Pcr ≡
λ2

0/2πn0n2 = 3.2 GW. The function

R(t) = exp(−t/τdK)/τdK (2)

mimics the molecular response of the gas with a char-
acteristic time τdK = 70 fs. The fifth term on the rhs
of equation (1) accounts for plasma absorption and defo-
cusing. The cross-section for inverse Bremsstrahlung fol-
lows the Drude model [32] and reads σ = kω0τc/n2

0ρc(1 +
ω2

0τ
2
c ) = 5.1 × 10−18 cm2 with τc = 3.5 × 10−13 s.

In the limit τc � ω−1
0 , the defocusing term can be ex-

pressed as a function of the critical plasma density ρc =
2 × 1021 cm−3 above which the plasma becomes opaque:
kσω0τcρ � k2

0ρ/ρc. The last term in equation (1) accounts
for energy absorption due to multiphoton ionization; the
coefficient βK is related to the multiphoton ionization
rate. The operator T ≡ 1 + iω−1

0 ∂/∂t accounts for space-
time focusing and self-steepening of the pulse. It describes

deviations from the slowly varying envelope approxima-
tion [15,28,29].

The generation of the plasma by multiphoton and
avalanche ionization is described by the evolution equa-
tion for the electron density ρ

∂ρ/∂t = σKIK(ρat − ρ) + ηρI. (3)

For multiphoton ionization of oxygen molecules with the
potential Ui = 12.1 eV, K = 8 photons are neces-
sary to liberate an electron. The coefficient σK = 3.7 ×
10−97 s−1 cm16 W−8 has been computed from Keldysh’s
theory [33] and is linked to βK as βK = σKK�ω0ρat,
where ρat = 0.2ρair = 5 × 1018 cm−3 denotes the density
of oxygen molecules. For avalanche ionization, η = σ/Ui.
Unless otherwise specified, we will use these parameters
and the input beams are modeled by collimated Gaussians
with peak intensity I0, a transverse waist w0 = 1 mm, a
temporal half width tp = 100 fs, and an input peak power
Pin = πw2

0I0/2 = 10 Pcr (I0 = 2 × 1012 W/cm2):

E(x, y, t, 0) =
√

I0 exp
[− (x2 + y2

) /
w2

0 − t2/t2p
]
. (4)

In the following, we consider beams with cylindrical sym-
metry that retain this symmetry along propagation and
we will use vector r = (x, y) for notational convenience.
The analysis is therefore relevant for pulses with powers
moderately above Pcr which do not lead to multifilamenta-
tion. Note, however, that it can be applied in the present
form to high power pulses whenever they form a single
filament.

The pulse power and the beam radius can be ex-
pressed as:

P (z, t) =
∫

I(r, z, t)dr (5)

w2(z, t) =
1

P (z, t)

∫
r2I(r, z, t)dr. (6)

From equation (1), we derive evolution equations for these
quantities by means of the variational method developed
by Anderson [34], or by applying the equivalent and more
direct method proposed in [35]. The envelope of the elec-
tric field is expressed as a self similar (test) function

E(r, z, t) =

A(z, t) exp
[−(1 + iα(z, t))ξ2 + iθ(z, t) − t2/t2p

]
(7)

where ξ ≡ r/w(z, t), and A2(z, t) = 2P (z, t)/πw2(z, t).
Then, it is introduced in integral equations derived from
equation (1). The resulting set of equations for A, α, θ,
and w can then be combined to give equations for the
pulse power and beam radius (see Ref. [35] and references
therein for details). In the following, we discuss in detail
the case where the power is preserved along propagation:

P (z, t) = P (z = 0, t) = Pin exp
(−t2/t2p

)
. (8)

This is the case when only the main physical effects pro-
moting femtosecond filamentation are considered, namely,
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diffraction, self-focusing due to the Kerr effect and ioniza-
tion which all preserve the pulse power. The propagation
equation (1) then becomes
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Previous numerical simulations of equation (1) have shown
that for the propagation of ultrashort laser pulses in
air [15,17] and in silica glasses [36,37], the collapse oc-
curring in a purely Kerr medium is arrested by multi-
photon ionization. Other effects as, e.g., group velocity
dispersion can also arrest the collapse in principle [38,39].
This occurs, however, when the dispersion length LGVD =
t2p/2k′′ is comparable to the self-focusing length LSF ∼
zR(Pin/Pcr − 1)−1/2 where zR = kw2

0/2 denotes the
Rayleigh length. In air, unless large initial beams (pro-
moting a weakly nonlinear self-focusing over extended dis-
tances) or beams with powers exceeding only slightly Pcr

are used, the condition LSF ∼ LGVD is not fulfilled [40].
Group velocity dispersion is therefore neglected and sim-
ilar reasons justify that multiphoton and plasma absorp-
tion, as well as space time focusing and self-steepening are
neglected. We also neglect avalanche ionization prevailing
for pulses longer than those considered here. All these ef-
fects may be reintroduced in the model later. Our aim is
to determine, in these conditions, whether a spatial soli-
ton can act as an attractor for the dynamics of long range
propagation in the form of a light filament. The beam ra-
dius then satisfies
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After performing the various integrations in equa-
tions (11, 12), we obtain the evolution equation for the
beam radius:
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where µ ≡ 2Kk0zRρ0/ρc, zR ≡ kw2
0/2 is the Rayleigh

length, ρ0 ≡ σKρatI
K
0 , w ≡ w(z, t) and w′ ≡ w(z, t′).

Note that equation (13) is obtained by keeping the
variation of w′(z, t′) with time in the electron density
ρ ∼ ∫ t

−∞ σKρat[2Pin/πw(z, t′)]K exp(−2Kξ′2)dt′, where
ξ′2 = r2/w′2(z, t′) and by transforming ξ′ as ξ′2 =
ξ2w2(z, t)/w′2(z, t′) in the integration over the transverse
spatial coordinate. Equation (13) therefore differs from
that obtained in [35] for the beam radius, and in other
works relying on variational analysis [41–43]. Below, we
discuss in details the consequences for the physics of fem-
tosecond pulse propagation these differences imply.

The pulse is stacked into temporal slices, each of which
containing a power given by equation (8). Equation (13)
constitutes a dynamical system that can be viewed as a
continuous set of coupled differential equations for the
radii of the various temporal slices in the pulse. Each slice
evolves as an oscillator in a pseudo-potential, which does
not only vary with w, but also with time through the
coupling by the electron plasma density and the delayed
Kerr effect. Before discussing numerical solutions of equa-
tion (13), some insight obtained from direct inspection of
this equation will be given.

3 Position of the nonlinear focus of the beam
in the presence of delayed Kerr effect

First, we discuss the case when only the Kerr effect is
taken into account, i.e., no plasma generation occurs as
in the initial self-focusing stage. Equation (13) with µ = 0
describes how the radii shrink in the transverse diffraction
plane under the action of both instantaneous and delayed
components in the Kerr effect. An expression for the posi-
tion of the nonlinear focus may be obtained by assuming
an expansion in time of the radius, i.e., w′ ∼ w + h.o.t.
where h.o.t. denotes a higher order term that is neglected
(see below for a discussion of this approximation). Equa-
tion (13) can then be integrated as

w2(z, t) = w2
0 −

(
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− 1

)
z2

z2
R

(14)

where
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+ f
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−∞
R(t′ − t)e−2(t′/tp)2

dt′
]
. (15)

From the expression of the input power given by equa-
tion (8) and the fact that the pulse power is preserved for
each temporal slice, the slices with power above Pcr are
contained in [−t∗, t∗] where t∗ =

√
0.5 log(Pin/Pcr). Equa-

tion (14), however, shows that the slices that undergo a
compression due to both contributions of the Kerr effect
are such that P̃in(t) > Pcr. Due to the delayed component
in the Kerr effect, the time domain where this condition is
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Fig. 1. Position of the nonlinear focus as a function of Pin/Pcr

from equation (18) (solid line), and from numerical simulations
of equation (1) (circles). Marburger’s result is shown in dashed
line.

satisfied is shorter than [−t∗, t∗]. This leads to the defini-
tion of an effective critical power P eff

cr = Pin exp(−t†2/t2p)
where t† is the smallest value such that P̃in(t†) = Pcr, and
for future reference, t+ is the largest.

Each time slice for which t† < t < t+ undergoes a
transverse compression that ends in a collapse singularity
on the propagation axis. The location of the collapse for
the time slice t then reads as

zc(t) =
zR√

P̃in(t)/Pcr − 1
· (16)

The whole pulse therefore collapse at the shortest of these
distances which constitutes a good approximation for the
position znf of the nonlinear focus of the beam reached
when a nonlinear effect such as ionization saturates the
collapse

znf =
zR√

maxt P̃in(t)/Pcr − 1
· (17)

Equations (17, 15) constitute a generalization of the equiv-
alent formula valid for self-focusing by instantaneous Kerr
effect only, with P̃in = Pin [44]. We conjecture that a best
fit for the position of the nonlinear focus may be obtained
by generalizing Marburger’s formula [45] as

znf =
zR

2.725
√

[(maxt P̃in(t)/Pcr)1/2 − 0.852]2 − 0.0219
·

(18)
Figure 1 shows the position of the nonlinear focus ob-
tained by numerical simulations of equation (18) as a
function of Pin/Pcr (circles). Equation (18) is shown in
solid curve and despite the approximation made, it is in
quite good agreement with the numerical data with less
than 1% error on the position of the nonlinear focus for
Pin/Pcr ≥ 3. For comparison, Marburger’s formula is re-
trieved for P̃in(t) = Pin in equation (18) and is shown in
dashed curve. It underestimates the position of the non-
linear focus when a fraction of the Kerr effect is delayed as
in air. In the presence of delayed Kerr effect, the position
of the nonlinear focus is therefore correctly approximated
by the couple of equations (15, 18), which is a simple ex-
tension of Marburger’s formula.

4 Simplified model with Kerr effect
and instantaneous multiphoton ionization

Second, we take into account plasma defocusing in equa-
tion (13) while keeping the approximation w′ ∼ w +h.o.t.
in the integrals and neglecting the higher order terms.
Equation (13) then becomes
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∂z2
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1

w3
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Pcr
) +

c(t)
w2K+1

)
, (19)

where P̃in is given by equation (15) and

c(t) = µw2K−2
0

1
2(K + 1)2
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π

2K

[
1 + erf

(√
2Kt/tp

)]
.

(20)
Physically, the assumption made means that each tem-
poral slice evolves independently: it amounts to relaxing
the physical coupling between the temporal slices. In the
terms accounting for the delayed Kerr effect and plasma
defocusing in the simplified model (19), a time asymme-
try between the leading and the trailing part of the pulse
is kept; it does not, however, replace the physical cou-
pling between the slices that these effects induce. In equa-
tion (19), plasma defocusing for example, is replaced by
a saturation, still occurring on the trail of the pulse due
to the time asymmetry, but with a level depending on the
local intensity only and not on the intensity of the leading
part of the pulse as should be the case in order to keep
the model causal. Causality is broken similarly in the term
corresponding to the delayed Kerr effect. In spite of this
limitation, we will briefly discuss the solutions of this sim-
plified model in order to compare the results with those of
the complete model (13) and show that this approximation
for the saturating nonlinearity leads to a pulse dynamics
that cannot correctly describe femtosecond filamentation.
This point is important since, due to its simplicity, this
approximation is used in most of the applications of the
variational methods to femtosecond filamentation and in
some numerical models in the literature.

The solutions of equation (19) for w(z, t) can be easily
found by considering the mechanical analogy with a con-
tinuous set of particles with positions w(z, t), moving in
the potential

V (w, t) =
2
k2
0

[
1

w2

(
1 − P̃in(t)

Pcr

)
+

c(t)
Kw2K

]
(21)

where z plays the role of time for the motion of the par-
ticles, and t refers to a given particle. Figure 2a shows
the potentials (21) as functions of w for various tempo-
ral slices. There is no equilibrium solution for the tem-
poral slices containing a subcritical power, i.e., such that
P̃in(t) < Pcr. For these slices diffraction prevails.

In the domain [−t†, t+], there is an equilibrium solu-
tion corresponding to the minimum of the potential (21),
given by

w2
eq(t) =


 c(t)

P̃in(t)
Pcr

− 1




1/(K−1)

· (22)
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Fig. 2. (a) Potential as a function of beam radius for the
temporal slices t/tp = −1, −0.5, 0, 0.5 and 1.5. (b) Radius
and (c) temporal shapes of the spatial solitons defined by (22),
for the values of Pin/Pcr indicated on the curves.

This quantity is plotted in rescaled coordinates in Fig-
ure 2b for various values of Pin/Pcr indicated on the
curves, varying from 4 to 10. The corresponding pulse
shape is plotted in Figure 2c. Here w0 corresponds to the
waist of the Gaussian beam with the same input power.
We have kept this value constant in the feet of these pulses
which rise and fall off abruptly around t† and t+. Their
narrowest part is located immediately behind t†. The ra-
dius of these solutions slightly increases with time but
the pulses are globally narrower in their central part than
in their feet, in contrast with a Gaussian pulse that has
a constant in time radius. Within the framework of this
model, these pulses represent the closest solutions to spa-
tial solitons as they exhibit a narrow and steady radius in
their central part while only their feet diffract.

Other solutions different from (22) are presented on the
phase portraits of equation (19) in Figure 3. Each phase
portrait corresponds to a given time slice indicated above
the trajectories which follow increasing z. Figure 3a is typ-
ical of the time slices t < t†. When a focusing lens is used,
the initial condition satisfies dw/dz(z = 0, t) < 0 and the
radius initially decreases for each slice but eventually in-
creases under the action of diffraction. The phase portraits
for the time slices t > t+ are similar [see Fig. 3d] except
that the radii not only increase because of diffraction but
also because of the defocusing effect of the plasma. Fig-
ures 3b and 3c correspond to the central part of the pulse
with t† < t < t+. The trajectories oscillate around the

Fig. 3. Phase portraits of equation (19) with Pin = 10Pcr for
the time slices (a) t = −tp, (b) t = −0.85tp, (c) t = 0.85tp

and (d) t = 2tp.

fixed points shown with a + sign. The set of these fixed
points for all t constitutes the spatial soliton with radii
given by (22). The cycles reflect the interplay between
self-focusing (part dw/dz < 0 of the cycles) and plasma
defocusing (part dw/dz < 0). The oscillation period Z(t)
depends on the time slice only and is not correlated to the
dynamics of the neighboring time slices. From this model,
the pulse exhibits an oscillatory behavior but the global
dynamics is not synchronized. The oscillation period is
shown in Figure 6 (thin curve) as a function of time for
the trajectory with w(z = 0, t) = w0. It is longer for the
slices in the trail and the leading edge of the pulse than
for the central slices. As a result a pulse with initially
synchronized slices, as e.g., a Gaussian input pulse with
w(z = 0, t) = w0 for all t will slowly loose this synchro-
nism along propagation, and finally exhibit a multipeaked
structure with various maxima corresponding to the slices
that arrive nearly simultaneously at the end of a focusing
half-cycle. Figure 4 shows this behavior for a pulse with
Pin = 10Pcr. The pulse intensity on the propagation axis
r = 0 is plotted in thin lines as a function of time for
various propagation distances (thick curves refer to the
solutions of Eq. (13) and will be discussed in the next
section). Two peaks are formed at z = 0.5zR [Fig. 3b]
from the initially Gaussian pulse. At z = zR [Fig. 3c],
the leading peak hidden by the thick curve evolves slowly
while the central maximum near t = 0 is in a self-focusing
process. Between z = zR and z = 1.3zR, the central max-
imum forms a spiky structure and a third peak develops
in the trail resulting in a multipeaked temporal structure
[Fig. 3d]. It goes without saying that the number of sub-
pulses increases along propagation and is all the larger as
the ratio Pin/Pcr is large.

Although these temporal profiles may seem close
to those obtained in numerical simulations of equa-
tion (1) [15,16], it should not be forgotten that the os-
cillating behavior in this model is fully determined by
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Fig. 4. Pulse intensity as a function of time computed from
model (19) (thin curves) and from model (13) at the propa-
gation distances (a) z = 0.2zR, (b) z = 0.5zR, (c) z = zR

and (d) z = 1.3zR.

the fact that the coupling between the various tempo-
ral slices is neglected. Note the analogy of this model
with the crude assumption of an instantaneous ionization
which amounts to replacing the plasma density in equa-
tion (1) by ρ ∼ σKρattpI

K(r, z, t). This approximation
does not respect causality and does not even preserve the
asymmetry between the forward and the backward part
of the pulse. The model equation (19), with a constant
c(t) = c(∞) relies on the same approximation. In this way,
a global oscillating dynamics is forced around the spatial
soliton defined by equation (22) with c(t) = c(∞). There-
fore, any numerical model with this non causal saturation
term for multiphoton ionization cannot correctly describe
the nonlinear dynamics of femtosecond filamentation as
it amounts to assuming a priori an oscillatory dynamics
around a spatial soliton. A correct model should allow the
possibility of oscillating behaviors but not contain an in-
trinsically periodic behavior.

5 Extended moving focus model

When the coupling between the various time slices is taken
into account as in equation (13), each time slice can still be
viewed as an oscillator but the pulse forms now a continu-
ous set of coupled oscillators and its global dynamics signif-
icantly differs from that resulting from equation (19). The
coupling between the various time slices arises from the in-
tegral terms, i.e. from the delayed Kerr effect and plasma
defocusing. The coupling is weak for negative times and
becomes effective for sufficiently large t. The delayed Kerr
effect indeed acts on the trail and the electron plasma
also saturates self-focusing on the trail of the pulse. Here
the saturation, however, also depends on the dynamics of
the pulse in its leading edge. This model therefore does
not violate causality in contrast with equation (19) and
with numerical models with an instantaneous ionization
as, e.g., equation (1) with ρ ∼ σKρattpI

K(r, z, t).
The pulse dynamics resulting from this model will be

discussed from the phase portraits of the dynamical sys-

Fig. 5. Numerically determined phase portraits for equa-
tion (13) and Pin = 10Pcr. (a) t = −0.9tp; (b) t = −0.85tp;
(c) t = −0.5tp; (d) t = 0.5tp. The dots indicate the trajectory
that would be followed if the solutions were periodic.

tem (13) that must be computed numerically. Starting
from Gaussian initial pulses with w(z = 0, t) = w0, equa-
tion (13) is integrated by increasing the time coordinate
from t = −∞ for each position z so as to take into ac-
count the effect of the leading slices on the subsequent
slices. The solutions are displayed in Figure 5 in the form
of partial phase portraits (w(z, t), ∂w/∂z) for four differ-
ent time slices. In contrast with Figure 3 where the trajec-
tories corresponding to initial Gaussian pulses with differ-
ent waists were displayed, only one trajectory (defined by
w(z = 0, t) = w0) per phase portrait is shown in Figure 5
for the sake of clarity. In a given phase portrait, this tra-
jectory can indeed cross the trajectories defined by other
initial values because of the coupling that links the time
slices to their neighbors. It can also intersect itself since
only projections of the phase space (w, ∂w/∂z, z) are ac-
tually shown for each time slice in Figure 5.

The effective critical power for self-focusing refers to
the power of the time slice for which a transition occurs
from a phase portrait similar to Figure 3a (for a time
slice with subcritical power, the trajectory starting from
w(z = 0) = w0, dw/dz = 0 has increasing w and posi-
tive dw/dz indicating diffraction), to a phase portrait ex-
hibiting an initial focusing stage with dw/dz < 0 as in
Figures 3b and 5a. We will keep the notations t† and t+

for the time slices with power equal to the effective crit-
ical power for self-focusing although these values differ
from those defined in Section 4 from equation (19). The
phase portraits corresponding to the central slices of the
pulse (t† < t < t+) with power above the effective crit-
ical power for self-focusing are shown in Figures 5a–5d.
In contrast with the solutions of (19), the trajectories are
neither closed, nor do they all exhibit complete focusing–
defocusing cycles. Closed trajectories shown in dotted
curves would be periodic. As indicated by the loops in
Figure 5b, some temporal slices located in the forward
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Fig. 6. Oscillation period from model (19) (thin line) and
duration of the initial focusing cycle from (13) (thick line).

part of the pulse exhibit a nearly periodic behavior; they
may undergo several focusing–defocusing cycles before an
eventual diffraction stage. Figures 5c and 5d are typical
of the temporal slices in the center and in the trail of the
pulse with t < t+. After a single focusing half-cycle, these
slices are defocused without oscillations of their diameter.
In this model, periodic oscillations of the beam diameter
are therefore not assumed a priori as in equation (19).
Figure 5b shows that a finite number of oscillations may
occur for some slices. Oscillations may not only happen
in the forward part, but also in the trail of the pulse, al-
though only the leading part oscillates in the example of
Figure 5. Multipeaked structures for the pulse intensity
are generically formed along propagation because the os-
cillating temporal slices of the pulse have different pseudo-
periods. The duration of a focusing-defocusing cycle for a
slice located in the trail indeed depends on the dynamics
of the pulse slices located in the leading edge, and there-
fore on the propagation distance. This constitutes one of
the main difference between model (19) and model (13).

Figure 6 shows the oscillation half-period for the radii
of the temporal slices in the central part of the pulse for
model (19) (thin curve) and the duration of the initial
focusing half-cycle for model (13), i.e., the distance re-
quested by each slice to reach its minimal radius. For the
forward part of the pulse with negative times, the dura-
tion of the first focusing stage is nearly equal to half the
oscillation period for the pulse radius obtained from equa-
tion (19). For equation (13), the trailing slices are synchro-
nized whereas for equation (19), the oscillation period is
longer in the trail and in the leading part than in the cen-
tral part. As a result, in model (13), the nonlinear focii
for the trailing slices are located at the same position on
the z-axis. The first part of the filament immediately be-
hind the nonlinear focus of the beam can be viewed as
the collection of the various focii on the propagation axis,
but mainly the leading slices in the pulse prevail in this
moving focus. Beyond these primary focii, the filament
can be viewed as the collection of secondary focii on the
propagation axis, corresponding to the successive focii of
the oscillating slices (which are the leading slices in the
example of Fig. 5).

The evolution of the pulse temporal profile is shown
in thick curves in Figure 4. The central and trailing
slices are focused over a distance roughly equal to 0.3zR.
Then, these slices are defocused while the leading slices

around −0.85tp make several oscillations over a longer
distance, resulting in a spiky temporal profile shown in
Figures 4b–4d. Here, a temporal profile with a single peak
is obtained for Pin = 10Pcr. As for light bullets, its dura-
tion is ultrashort and it possesses long range propagation
properties since the focus of the leading slice already ex-
ceeds the position of the nonlinear focus by more than
three Rayleigh lengths. Multipeaked structure can also
arise from this model but do not result from the assump-
tion of a periodic dynamics as in equation (19). Prelim-
inary studies have shown that when power losses arising
from multiphoton absorption and from the self-steepening
effect are taken into account in the model, multipeaked
structure are more easily formed at the same input power.

Although a global periodic behavior is not a priori
assumed in this model, oscillatory behaviors with a fi-
nite number of cycles are not precluded because of the
presence of oscillating slices in the pulse. Note that the
difference between the distance over which these focusing-
defocusing cycles occur and the distance to the nonlin-
ear focus of the beam (first self-focusing cycle) determines
the length of the filament. In this model no energy losses
were considered and the length of the filament is how-
ever finite. Energy losses are important to precisely quan-
tify the length of a filament but the long range propaga-
tion of femtosecond laser pulses in the form of a filament
mainly relies on the physical effects ensuring the focus-
ing and defocusing properties of the beam. Energy losses
only bounds the filamentation length obtained from this
dynamical equilibrium.

Ideally, in the framework of this model a spatial soli-
ton would be constituted by a set of fixed points of (13)
satisfying ∂w/∂z = 0 and ∂2w/∂z2 for all t. It is clearly
impossible to find such a set of fixed points for subcritical
slices, except if w(t) = ∞ for t < t† and t > t+. Apply-
ing these conditions, we have sought for a solution in the
central slices t† < t < t+, by solving numerically equa-
tion (13) with ∂2w/∂z2 = 0, but only very localized solu-
tions (shorter than 10−2tp = 1 fs) could be found. These
light bullets are close to the temporal profiles shown in
thick curves in Figures 4b–4d, but the question whether
they constitute attractors for the dynamics of equation (1)
is still open.

To conclude we will briefly compare our interpreta-
tion of femtosecond filamentation inferred from model (13)
with previous models. The model we have proposed is
nothing else than an extended moving focus model that
takes into account the defocusing effect of the plasma gen-
erated by multiphoton ionization and the delayed com-
ponent in the Kerr effect. In this respect, it extends the
model proposed in [30] relying on instantaneous Kerr ef-
fect and diffraction, i.e., with a validity range limited to
the self-focusing stage before the nonlinear focus. Accord-
ing to the original picture of the moving focus model given
in [30], a beam focused by a lens cannot form a femtosec-
ond filament beyond the linear focus of the lens; experi-
mental results were shown to be in contradiction with this
model [46]. When the coupling due to multiphoton ioniza-
tion is carefully taken into account as in equation (13),
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the formation of a filament beyond the linear focus of a
lens is explained by the fact that the distance covered by
the focusing-defocusing cycles of the oscillating slices is
larger than the focal length. This clearly happens when
the focal length is smaller than the Rayleigh length.

The present model also explains the occurrence of mul-
tipeaked structures commonly obtained in numerical sim-
ulations of equation (1) [15]. In this respect, it can be
viewed as a quantitative version of another famous model
called the spatial replenishment model (SRM) [9]. The
SRM interprets qualitatively the physics of femtosecond
pulse propagation from the results of numerical simula-
tions of equation (1). Two important differences remain,
however, between this model and the SRM: (i) the SRM
relies on the extinction of the leading peak of the pulse
to make the replenishment possible [47]. The decay of the
leading peak was observed numerically and may have been
induced by any effect in equation (1) that promotes a re-
duction of the power contained in the leading peak, such
as multiphoton absorption, group velocity dispersion or
other losses. No losses are considered in the present model,
yet, a decay of the leading peak occurs when the focus-
ing of the trailing part of the pulse is delayed by a half
focusing-defocusing cycle for the leading peak, which hap-
pens for powers exceeding moderately the critical power
(this is the case of the numerical results on the spatial
replenishment model). (ii) The SRM correctly describes
the formation of ring patterns in the intensity distribu-
tion. The present model assumes a self-similar Gaussian
function in the transverse diffraction plane. In spite of
this limitation, the model retains the oscillating dynamics
of the pulse propagation which is therefore not inherent
to the ring formation. The model can even be applied to
different, non-Gaussian test functions in order to predict
correctly the occurrence of these ring patterns. Although a
complete development of this analysis is beyond the scope
of the present paper, the main steps to follow are briefly
discussed below. For a test function φ(z, r/w(z)), we de-
fine a new beam radius W (z, t) linked to the mean square
radius w(z, t) by:

W 2(z, t) = w2(z, t)
∫

ξ2φ2(z, ξ)dξ2∫
φ2(z, ξ)dξ2

, (23)

where ξ ≡ r/w(z). The generalization of equation (13)
then reads as

k2W 3

4
∂2W

∂z2
= D(z) − Pin

Pcr

[
(1 − f)F(z)e−2(t/tp)2

− 4fG(z)W 2

∫ t

−∞

R(t′ − t)e−2(t′/tp)2

W (z, t′)2

×
∫ +∞

0

φ2

(
ξ

W (z, t)
W (z, t′)

)(
2 + ξ

∂

∂ξ

)
φ2(z, ξ)dξ2

]

+ µw2K−2
0 I(z)W 2

∫ t

−∞

e−2K(t′/tp)2

W 2K (z, t′)

×
∫ +∞

0

φ2K

(
ξ

W (z, t)
W (z, t′)

)(
2 + ξ

∂

∂ξ

)
φ2(z, ξ)dξ2 (24)

D(z) =

(∫
(∂φ/∂ξ)2 dξ2

) (∫
ξ2φ2(z, ξ)dξ2

)
(∫

φ2(z, ξ)dξ2
)2 (25)

F(z) =

4

(∫
φ4(z, ξ)dξ2

) (∫
ξ2φ2(z, ξ)dξ2

) (∫
φ2(0, ξ)dξ2

)
(∫

φ2(z, ξ)dξ2
)3

(26)

G(z) = 2

(∫
ξ2φ2(z, ξ)dξ2

) (∫
φ2(0, ξ)dξ2

)2(∫
φ2(z, ξ)dξ2

)3 (27)

I(z) =
2K

K

(∫
ξ2φ2(z, ξ)dξ2

)K (∫
φ2(0, ξ)dξ2

)K+1(∫
φ2(z, ξ)dξ2

)2K+1
· (28)

Once a test function is chosen, the evolution of the mean
square radius w(z, t) as a function of the propagation dis-
tance follows from equation (23) and the integration of
equation (24). With a Gaussian φ(z, ξ) = exp(−ξ2), equa-
tion (24) coincides with equation (13). A test function
allowing ring formation reads as φ(z, ξ) = (exp(−(ξ −
d(z))2) + exp(−(ξ + d(z))2), where d(z) is the normalized
distance of the ring to the propagation axis. Equation (24)
applied to this test function preserves the dynamics of
the extended moving focus model obtained above with
the Gaussian test function while it is likely to reproduce
the rings formed by defocusing of the central part in the
trail of the pulse, as shown in the spatial replenishment
model [9].

Finally, the physical effects that induce power losses,
such as multiphoton and plasma absorption, group ve-
locity dispersion, space-time-focusing and pulse self-
steepening can modify the dynamics of the light bullets
identified in this model. Whether these effects induce a
relaxation to a stable spatial soliton promoting a propa-
gation over a longer distance or merely consume the pulse
energy and therefore reduce the filamentation length is
still an open question that belong to the perspectives of
the present study.

Fruitful and stimulating discussions with A. Mysyrowicz,
M. Franco, B. Lamouroux, G. Méchain, B. Prade and S.
Tzortzakis are gratefully acknowledged.
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